Tianhe (Kevin) Yu
tianheyu at cs dot stanford dot edu

I am a first-year PhD student in CS at Stanford University, where I am a part of Stanford Artificial Intelligence Laboratory (SAIL). Previously, I graduated from UC Berkeley with highest honors in Computer Science, Applied Mathematics and Statistics. During my undergraduate study, I worked with Professor Pieter Abbeel, Professor Sergey Levine, and Professor Alexei Efros as an undergraduate researcher in the Berkeley Artificial Intelligence Research (BAIR) Lab.

Google Scholar  /  LinkedIn  /  GitHub


My research interests lie at the intersection of machine learning, perception, and control for robotics, specifically deep reinforcement learning, imitation learning and meta-learning.

One-Shot Hierarchical Imitation Learning of Compound Visuomotor Tasks
Tianhe Yu, Pieter Abbeel, Sergey Levine, Chelsea Finn
arXiv preprint
arXiv / video

We aim to learn multi-stage vision-based tasks on a real robot from a single video of a human performing the task. We propose a method that learns both how to learn primitive behaviors from video demonstrations and how to dynamically compose these behaviors to perform multi-stage tasks by "watching" a human demonstrator.

One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning
Tianhe Yu*, Chelsea Finn*, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, Sergey Levine
Robotics: Science and Systems (RSS), 2018
arXiv / blog post / video / code

We present an approach for one-shot learning from a video of a human by using human and robot demonstration data from a variety of previous tasks to build up prior knowledge through meta-learning. Then, combining this prior knowledge and only a single video demonstration from a human, the robot can perform the task that the human demonstrated.

One-Shot Visual Imitation Learning via Meta-Learning
Chelsea Finn*, Tianhe Yu*, Tianhao Zhang, Pieter Abbeel, Sergey Levine
Conference on Robot Learning (CoRL), 2017 (Long Talk)
Oral presentation at the NIPS 2017 Deep Reinforcement Learning Symposium
arXiv / video / talk / code

We present a meta-imitation learning method that enables a robot to learn to acquire new skills from just a single visual demonstration. Our method requires data from significantly fewer prior tasks for effective learning of new skills and can also learns from a raw video as the single demonstration without access to trajectories of robot configurations such as joint angles.

Real-Time User-Guided Image Colorization with Learned Deep Priors
Richard Zhang*, Jun-Yan Zhu*, Phillip Isola, Xinyang Geng, Angela S. Lin, Tianhe Yu, Alexei A. Efros
ACM Transactions on Graphics (SIGGRAPH), 2017
arXiv / project website / video / slides / talk / code

We propose a deep learning approach for user-guided image colorization. Our system directly maps a grayscale image, along with sparse, local user “hints” to an output colorization with a deep convolutional neural network.

Generalizing Skills with Semi-Supervised Reinforcement Learning
Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine
International Conference on Learning Representations (ICLR), 2017
arXiv / video / code

We formalize the problem of semi-supervised reinforcement learning (SSRL), where the reward signal in the real world is only available in a small set of environments such as laboratories, and the robot need to leverage experiences in these instrument environments to continue learning in places where reward signal isn’t available. We propose a simple algorithm for SSRL based on inverse reinforcement learning and show that it can improve performance in 'unlabeled' environments by using experience from both 'labeled' environments and 'unlabeled' environments.

Template 1, Template 2